Persistent Pulmonary Hypertension of the Newborn (PPHN)

Billie Lou Short, MD Chief, Division of Neonatology

Pulmonary Circulation

- Low-pressure, high-flow system with a great capacity for recruitment of normally unperfused vessels
- Wall of PA are thin
- PAH is a disease of the small pulmonary arteries, characterized by vascular narrowing, leading to progressive increase in pulmonary vascular resistance

Pulmonary Hypertension

- Vasoconstriction
- Remodeling of the PA
- wall
- Thrombosis

Pulmonary arterial obstruction by vascular proliferation & remodeling is the hallmark for PAH pathogenesis

Pulmonary Hypertension

- Pulmonary vascular remodeling involves all layers of the vessel wall
 - Endothelial Cells
 - Smooth muscle cells
 - Fibroblasts Adventitia
 - Inflammatory Cells
 - Platelets and thrombosis

Mediators of PAH

- Prostacyclin
- Vasoactive intestinal peptide
- Nitric oxide
- Endothelin-1
- Potassium Channels
- Serotonin

Clinical Syndrome

PVR after birth

○ R → L shunting at the PDA &/or PFO

Resulting in persistent hypoxia

The Fetal Lung

•High Resting Vascular Tone -Causes

- Compression of PA by fluid filled alveoli
- Low alveolar oxygen tensions, 17 20 mmHg
- Different balance between the vasoconstrictors & vasodilators pre and post delivery

FETAL LUNG Vasoactive Mediators

Vasodilators

Vasoconstrictors

Nitric OxideProstacyclin

Estrogen

Adenosine

 Platelet-activating factor

Endothelin-1

- Leukotrienes
 - Thromboxane

The Endothelin Family

• Endothelial derived vasoconstrictor peptides

- 3 Isoforms of this 21- amino acid peptide
 - Endothelin-1
 - $\bullet \ Endothelin-2$
 - Endothelin-3

Endothelin – Fetal Lung

- Hypoxia stimulates the production of ET-1
- ET-1 levels increase during gestation, then decrease rapidly in the postnatal period
- Nitric oxide suppresses ET-1 synthesis
 - Low Nitric Oxide production in fetal life may allow the high level of ET-1

The Fetal Circulation

• The Transition to Birth

- Endothelium acts as a paracrine modulator of vascular resistance, release of vasoactive products including *Nitric Oxide & Arachidonic Acid Metabolites (PGI₂)*
- Oxygen, ventilation, & shear stress are an important stimuli for endothelial NO & PGI₂ production during transition

The Fetal Circulation

The Transition to Birth

- Redirecting of blood flow from the placenta
 marked changes in shear stress & oxygen levels
- 8-10 x increase in pulmonary blood flow
- Ductus closes secondary to high oxygen content
- Foramen ovale closes with increased left atrial pressure changes when pulmonary blood flow increases

PPHN – Vascular Changes

Vascular Changes

- Structurally abnormal vascular bed
 - Increase in pulmonary artery medial smooth muscle
 - Extension of medial smooth muscles into the nonmuscular PAs
 - Increase in collagen formation

Causes:

- Altered intrauterine environment, chronic hypoxia, chronic infections
- Unknown

Congenital Diaphragmatic Hernia - PPHN

Abnormal number of branching vessels, i.e., hypoplastic lungs

Increased Pulmonary Medial Artery Smooth Muscle

PPHN - Diagnosis

Diagnostic Test – Clinical Presentation

 \blacksquare "Flip-Flop" phenomenon – ${\rm PaO_2}$ flipping from high to low with only small changes in clinical state

- Chest X-ray no help
- Hyperoxia test may be negative
- Hyperoxia-hyperventilation test may be positive
- $\textcircled{$ Differential pO_2s or Stats in the Pre & Post Ductal area seen in PDA shunting infants
- Cardiac ECHO, definitive study

PPHN - Diagnosis

Pre-ductal PaO₂ >15 torr higher than Post-ductal PaO₂, then ductal shunt, indicating PPHN

If shunting primarily at the PFO level, then no oxygen level difference

Test	FIO2	Ventilator Status	PaCO₂ Goal	pO₂ in PPHN	pO₂ in Parenchymal Disease	pO₂ in CHD
Room Air	21%	Spontaneous Respirations	40 torr	40 torr	40 torr	40 torr
Hyperoxia Test	100%	Spontaneous Resp. or mechanical ventilation	40 torr	40 torr	>100 torr	40 torr
Pre-Post Ductal Shunting Evaluation	100%	Spontaneous Resp. or mechanical ventilation	40 torr	∆ >15 torr	∆ <5 torr	∆ <5 torr
Hyperoxia- Hyperventilation Test	100%	Hyperventilation	20-25 torr	>100 torr	>150 torr	40 Torr

Term Infant – PPHN: Treatment **Strategies**

Lung Protection

- Must understand the underlying lung disease
- Must understand the causes of lung injury
 - Oxygen toxicity • Over distension of lung units (lung volume or stretch, not pressure)
 - Lung inflammation makes the lung more susceptible to volutrauma & oxidant lung injury
 - Surfactant deficiency atelectrauma, related to distension

PPHN -

Treatment Strategies

- Reduce Agitation sedation & pain management Morphine/fentanyl & Valium/versed
- Paralysis if sedation does not work Ventilation techniques
 - Conventional ventilation
 - HFOV
- Alkalinization
 - Respiratory, pH 7.50, PaCO₂ 25-35 torr
 Alkalinizing drip: NaHCO₃ or THAM
- Maintain systemic blood pressure normal or slightly higher than normal
- iNO
- ECMO

PPHN - Treatment

- Should we keep the PaO₂ higher than 100 torr ?
 - At what expense ?
 - Hyperoxia, through oxygen radical formation upregulates ET-1
 ET-1 causes vasoconstriction
 ET-1 may cause SMC hypertrophy

Hyperventilation: PPHN Treatment

Two major papers

- Peckham GJ & Fox, WW, J of Pediatrics, Vol. 93(6): 1005-1010, 1978
- Drummond WH, Gregroy GA, Heymann MA, & Phibbs, RA; J of Pediatrics, Vol. 98, 603-611, 1981
- Total patients = 14 term infant
 - All had PA lines in place
 - Marked reduction in PA pressure & improvement in oxygenation

Very small numbers. Results only showed immediate response, did not measur long-term outcome

Hyperventilation: CON

- No controlled trial to show efficacy
- To achieve low pCO2, you must increase ventilator support to a level that you're causing lung injury – small studies have shown improvement with "gentle ventilation approach"
- Severe alkalosis may be related to hearing loss noted in the PPHN population

Inhaled Nitric Oxide for the Early Treatment of Persistent Pulm Hypertension of the Term Newborn: A Randomized, Double-M Placebo-Controlled, Dose-Response, Multicenter Study	ionary asked,
Dennis Davidson, MD*§; Elaine S. Barefield, MD*‡; John Kattwinkel, MD*‡; Golde Dudell Michael Damask, MD#; Richard Straube, MD#; Jared Rhines, BA#; Cheng-Tao Chang, PhD the I-NO/PPHN Study Group Pediatrics, 101(8):325-334, 1998	, MD*+; D#; and
Funded by INO Therapeutics (Ohmeda Medical)	

Г

Treatment gas (h)	(n = 41)	(n = 114)	
Treatment gas (h)		400 X X X X	
A The section of the sector			
All patients	68 ± 74	58 ± 58	0.99
Until success: weaning criteriat	107 ± 69	81 ± 59	0.13
Until failure: cardiopulmonary instability‡	10 ± 11	10 ± 13	0.58
Time to ECMO (h)	22 ± 15	42 ± 44	0.24
Duration of ECMO (h)	103 ± 32	129 ± 63	0.26
Mechanical ventilation (h)	199 ± 111	220 ± 177	0.94
Supplemental oxygen (h)			
All patients	155 ± 164	129 ± 130	0.47
Success: wearing criteriat	69 ± 60	97 ± 71	0.13
Hamitalization (b)6	200 ± 224 626 ± 382	154 = 163	0.45
Prospiranzation (rigs	040 2 804	 300 ± 207	0.40
time (hours) starts at initiation of treatment gas. ao; :=60 Torr when Fio; :=0.6, mean airway pressure tudy definitions of hypewenia, hypotension, need for initi 8 au days of discharge. filceson rank sum test.	<10 cm H ₀ O. r other rescue.		

TABLE 4. RELATIVE RISK Oxygenation A	OF EXTRAC	ORPOREAL M O DIAGNOSI	EMBRANE S.
Diagnosis	Extrace Membrane	Relative Risk (95% CI)*	
	GROUP (N=122)	NITRIC OXIDE GROUP (N=126)	
	no√tota	l no. (%)	
Meconium aspiration syndrome	26/42 (62)	15/43 (35)	0.6 (0.3-0.9
Pneumonia	18/26 (69)	9/26 (35)	0.5 (0.3-0.9
Idiopathic pulmonary hyperten- sion	9/25 (36)	9/32 (28)	0.8 (0.3-1.9
Respiratory distress syndrome	9/11 (82)	3/11 (27)	0.3 (0.1-0.9
Congenital diaphragmatic hernia	16/18 (89)	12/13 (92)	1.0 (0.8-1.2
Pulmonary hypoplasia	0	0/1	

OUTCOME	GROUP (N = 121)	GROUP (N=114)	P VALU
Death by day 120 or ECMO — no. (%)	77 (63.6)	52 (45.6)	0.006
Death — no. (%)	20 (16.5)	16 (14.0)	0.60
ECMO	54.5%	38.6%	0.014
Change in PaO ₂ — mm Hg	9.7±51.7	58.2 ± 85.2	< 0.001
Change in oxygenation index	0.8 ± 21.1	-14.1 ± 21.1	< 0.001
Change in alveolar-arterial oxygen gradient — mm Hg	-6.7 ± 57.5	-60.0 ± 85.1	< 0.001
Length of Stay	29.5	36.4	0.17
Duration of assisted ventilation - days	11.7±13.0	11.6±7.0	0.97
Air leak after randomization — no. (%)	5 (5.1)	5 (5.2)	0.96
Bronchopulmonary dysplasia — no. (%)† *Plus-minus values are means ±SD. ECMO denotes PaQ. partial pressure of arterial ovveen	extracorporeal m	embrane oxyger	0.48 nation, a

Rebound - iNO Therapy

- Negative feedback loop, i.e., iNO turns off endogenous production of NO
- •iNO exposure for 24hrs caused 2fold increase in serum concentrations of ET-1 (*Kelly,et al, J* of *Pediatrics, 2002*)

iNO - the Bad

NO + O₂ = Peroxynitrite

Induce lung injury

Increased apoptosis in cells exposed to 4hrs of NO

NO produces superoxide in high flow states, maybe responsible for SMC hypertrophy & remodeling of vascular bed in this population

How Do We Safely Use iNO? Clark, Pediatrics, 104(2):296-297, 1999

• iNO studies establish that iNO improves oxygenation & reduces the use of ECMO

- this does not translate to improved health
- Length of stay > iNO patients than controls in NINOS Trial, 36 vs 30 days
- Higher mortality in iNO treated patients, 8% vs 2%
- Does iNO delay the initiation of ECMO? Is this delay associated with risk for morbidity ?

Endothelin-A receptor Blockade in Porcine Pulmonary Hypertension

Ambalavavav N., et. al: Pediatric Res Vol 52 (6):913-921, 2002

Compared the physiologic effects of two Endothelin-A receptor blockers, <u>EMD 122946 &</u> <u>BQ 610</u> on two pathologic conditions with PH

- Hypoxic Induced PH
- GBS induced PH

Surfactant Deficiency in Term Infants

- **Primary lung injury:** MEC, sepsis, hyperoxia - injury of type II pneumocyte with decreased surfactant production
- MEC & protein inhibit surfactant activity
- Sepsis leakage of fluid into the alveolar space with destruction of surfactant
- Mechanical ventilation may damage the alveolar capillary barrier with cell injury & protein leak

Surfactant Therapy in ECMO Patients Lotze, et al, J Pediatr 1993;122:261-268					
	Surfactant	Control			
	n = 20	n = 20			
Duration of ECMO (hr)	107 ± 33 *	139 ± 53			
Time to extubation (hr)	28 ± 14	58 ± 84			
Duration of O ₂ (hr)	185 ± 154	351 ± 524			

25 (11-129)

Age at discharge (days) 20 (12-36)

PPHN – Treatment Strategies

Maintain systemic blood pressure normal or slightly higher than normal

- <u>Dopamine</u>, pulmonary effects if >8ug/kg/min dose (alpha, beta)
- <u>Dobutamine</u>, primarily inotropic effect with peripheral vasodilation, maximum dose, 20ug/kg/min (beta)
- <u>Isoproterenol</u>, chronotropic effect (increased HR) limits use in newborns (beta)
- <u>Volume expansion</u> as needed NS, 5% Albumin

Ventilator & Oxygen Management

- Make small changes on the ventilator large changes may cause the patient to flip back into PH or vasoconstrict and worsen
- Make only one change at a time, e.g., only the FIO₂, not FIO₂ and PIP

PPHN – Normal Course

- By 5 days of age, most infants have resolved their pulmonary hypertension, although some may persist beyond this time period
- After 5 days of age, consider normalizing all blood gas parameters for the patient, e.g., keep PaCO₂ 40-60 range; PaO₂ 60-80 mmHg