

- 1679, Lazarus Riverius 1st described CDH

 He noted CDH during a postmortem examination of a 24-year-old person
- 1701, Sir Charles Holt described the classical clinical & postmortem findings of an infant with CDH

- 1761, Giovanni Battista Morgagni published review of CDH, describing the classic anterior diaphragmatic hernia, now named the Morgagni hernia
- 1848, Victor Alexander Bochdalek, described both right & left posterolateral CDH, called the Bochdalek hernia
- 1946, Gross reported the 1st successful repair of a neonate with CDH within the 1st 24hrs

Congenital Diaphragmatic Defects

- Bochdalek 90% of cases
- Morgagni 5-10% of cases
- Hiatus hernia rare

Congenital Diaphragmatic Hernia

- Bochdalek hernia
 - Posterolateral defect
 - Failure of the pleuroperitoneal folds to developImproper or absent migration of the
 - diaphragmatic musculature
 - Occurs approximately 6 weeks of gestation
 - *left sided* Bochdalek seen in 90% of all cases
 - Bilateral lesions are rare

- Prenatal diagnosis
 - 50% diagnosed early in pregnancy
 - Week 16 and 24
 - At first routine ultrasound
 - If polyhydramnios noted
 - Right sided more difficult to diagnose
 - Findings:
 - Stomach or bowel in left chest level with the 4
 - chambered view of the heart
 - Mediastinal shift away from the side of the lesion

Congenital Diaphragmatic Hernia

Prenatal Diagnosis

- Ultrasound -
 - usually done as routine study or if polyhydramnios noted
- CT/MRI -
 - best to differentiate difficult cases
 - allows prognostic measurements to be taken

Congenital Diaphragmatic Hernia • Prenatal Factors – prognostic

- indicators
 - Early diagnosis, <25 weeks
 - Polyhydramnios
 - Intrathoracic stomach bubble

Initially thought to predict high mortality, but none have been found to be consistently reliable

Congenital Diaphragmatic Hernia Prenatal Factors – prognostic indicators Right lung diameter to head circumference, known as lung:head ratio <0.6 correlated with 100% mortality - Those in mid-range, less predictive - LHR combine with liver in chest used by fetal surgery centers to predict high mortality Extreme measures appear helpful, but when tested in a prospective randomized trial for fetal surgery, LHR in the mid-ranges were not predictive of mortality

Outcome or Complication	Standard Care (N=13)	Tracheal Occlusion (N=11)	P Value
Maternal death - no. (%)	0	0	
Maternal blood transfusion - no. (%)	0	0	
Maternal infection (wound) no. (%)	0	1 (9)	
Preterm labor — no. (%)	4 (31)	8 (73)	0.10
PROM - no. (%)	3 (23)	11 (100)	< 0.001
Time from tracheal occlusion to PROM — days Mean Range Time from PROM to delivery — days Mean Range	<1	24.8±14.8 5-52 9.5±8.5 0-28	
Placental abruption - no. (%)	1 (8)	3 (27)	0.30
Mode of delivery — no. (%) Planned EXIT Induced vaginal delivery Cesarean delivery	12 (92) 1 (8)	11 (100) 0 0	
Gestational age at delivery — wk Mean Range	37.0±1.5 34.0-39.0	30.8±2.0 28.0-34.0	< 0.001
Birth weight - kg	3.03±0.48	1.49±0.36	< 0.001

Table 3. Ninety-Day Survival According to Assigned and Actual Treatment and According to the Lung-to-Head Ratio.					
Group		ung-to-Head	Ratio	Total	
	≤0.78	0.79-1.06	1.07-1.39		
		number/tot	al number (perce	ent)	
Assigned treatment					
Standard care	0/0	6/9 (67)	2/2 (100)	8/11 (7	
Tracheal occlusion	0/1	7/9 (78)	3/3 (100)	10/13 (7)	
Actual treatment					
Standard care	0/0	8/11 (73)	2/2 (100)	10/13 (7)	
Tracheal occlusion	0/1	5/7 (71)	3/3 (100)	8/11 (7	
Total	0/1	13/18 (72)	5/5 (100)*	18/24 (75	

- Mortality related to

 - Pulmonary hypoplasia
 Persistent Pulmonary Hypertension
 Associated Anomalies

 Fryns syndrome
 Trisomy 13 & 18
 De Lange syndrome
 Cardiac

PRENATAL DIAGNOSIS OF CDH: HOW PATIENTS BE DELIVERED? SHOU Frenckner , et al, CDH Registry, Abstract, EC

- N=848, survival 66% (363/848)
 - -C/S survival 70%
 - -Induced vaginal delivery, 67%
 - -Spontaneous vaginal delivery, 62%

- Differential diagnosis
 - Bronchogenic cyst
 - Cystic adenomatoid malformation
 - Congenital lobar emphysema
 - Pneumothorax
- Prenatal diagnosis
 - CT &/or MRI important to help differentiate these lesions

Congenital Diaphragmatic Hernia

 Cystic adenomatoid malformation

 Can see shift of mediastinum

 Intestinal contents normal position

- Congenital lobar emphysema
 - Usually only one cyst,
 - not multiple – Intestinal contents normally located

Congenital Diaphragmatic Hernia

 Diagnosis can be difficult at birth if patient is intubated immediately in delivery room prior to ventilation

 NG tube indicating stomach in chest

May need UGI

- Idiopathic birth malformation
 Majority sporadic
 2% familial association
- Occurrence, 1:2000-4000 births
- Represents 8% of all major congenital anomalies
- 30-50% incidence of other malformations associated with CDH

 - rdiovascular nitourinary
 - strointestinal
 - thal anomalies in 16%

Genetics of CDH

• Questions –

- Is CDH the result of malformed diaphragm during development, resulting in hypoplastic lungs?
- Is CDH the result of malformed lung, and resultant malformed diaphragm during development?
 - CDH multiple causes?

Smith, et al., Paediatric Respiratory Reviews, Vol 3, 2002

CDH: Pathophysiologic Mechanisms

Vitamin A

- Important in lung development
- Wilson, et. al, noted high incidence of CDH in pups of Vit A deficient rats
- Human infants with CDH have significantly reduced levels of retinol & retinol-binding protein
- Transgenic mice in which both copies of the retinoic acid receptor (Vit A receptor) gene have been deleted display CDH with left lung agenesis & lung hypoplasia
- Thebaud, et. al, have shown reduction of CDH in the nitrofen model with prenatal treatment with Vitamin A

CDH: Pathophysiologic Mechanisms

Surfactant

- Studies in animals models have shown CDH animals to be surfactant deficient
- Nitrofen model
- Surfactant phospholipids & SP-A decreased, but capacity to produce surfactant was equal to controls
- Human data less clear
- No improved outcome in human multi-centered controlled trials with surfactant use in the CDH patient

CDH: Pathophysiologic Mechanisms

Glucocorticoids

- Animal models indicate decreased levels of saturated phosphatidylcholine, total lung DNA & total lung protein, indicating lung immaturity
- Question would antenatal glucocorticoids improve outcome ?
 No human data to support this use

- Inhaled nitric oxide
- Permissive hypercapnia
- Surfactant
- ЕСМО
- Liquid ventilation

- Ventilation strategies
 - Reduce ventilator-induced lung injury
 - Pressure limited ventilation
 - Tolerance of higher PaCO₂
 - Avoidance of paralysis, use sedation

Permissive Hypercapnia

Stolar, reported 84% survival to discharge in 120 infants treated with this method

Boloker, et al., J of Ped Surg, Vol 37, 2002

High Frequency Ventilation - HFOV

- Results from HIFI study group in the US & studies by Paranka et al., did not show benefit
- Reyes, et al., Somaschini, et al., & Cacciari, et al., have shown early use of HFOV can improve outcome

Paranka, et al., Pediatrics, Vol 95, 1995

- HIFI study group, NEJM, Vol 320, 1989
- Reyes, et al., J Pediatric Surgery, Vol 33, 1998 Somaschini, et al., Eur J Pediatrics, Vol 158, 1999
- Cacciari, et al., Eur J Pediatric Surgery, Vol 11, 2001

Congenital Diaphragmatic Hernia

- Inhaled nitric oxide
 - Multi-center NIH trial did not show long-term improvement in outcome with use of iNO
 - Meta-analysis and Cochrane review showed no improved outcome in the CDH population
 - May be some evidence for use post-ECMO

The Neonatal Inhaled Nitric Oxide Study Group (NINOS), Pediatrics, Vol 99, 1997 Finer, NN, Cochrane Database Syst Rev, Vol 4, 2001

Congenital Diaphragmatic Hernia

Surfactant

- Animal data to support deficiency
- Human data is not conclusive
- Lotze, et al, conducted prospective multicenter randomized trial – no effect on outcome

Lotze, et al., J Pediatric Surgery, Vol 29, 1994

Liquid Ventilation

- Use of fluorocarbons to provide gas delivery & removal of CO₂
- May be a useful method of stimulating lung growth through distention of lung
- Requires further study

Major, et al., J Pediatric Surgery, Vol 30, 1995 Pranikoff, et al, J Pediatric Surgery, Vol 31, 1996

Congenital Diaphragmatic Hernia ECMO Data from the ECLS registry shows that survival has remained the same over the years, 50-60% UK ECMO trial failed to support ECMO use in CDH, but very stringent entry criteria (OI>60) Cochrane review showed significant survival for all in ants, including CDH UK Collaborative ECMO Trial, Lancet, Vol 348, 1996 Elboume, et al., Cochrane Database Syst. Rev., CD001340, 2002

Treatment	Prospective Randomized Controlled Trial	Effective Therapy
HFOV	Yes	No
iNO	Yes	No
Permissive Hypercapnia	No	-
Surfactant	Yes	No
ЕСМО	Yes?	No/Yes
Liquid	No	-
Ventilation		

• Conclusions:

- Conclusions:
 Cause is still unknown, probably multifactorial
 Diagnosis prenatally should be improved with routine ultrasound and follow-up studies with CT/MRI
 Fetal surgery has not been found to improve outcome
 Treatment is still controversial