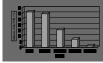
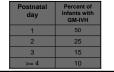


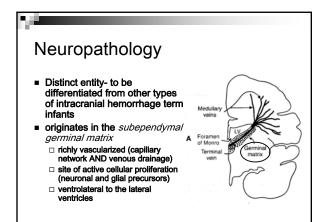
OBJECTIVES

To understand the:


5. UK

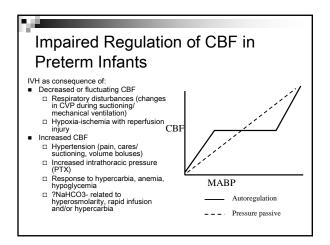
- Pathogenesis and epidemiology of GM-IVH
- Clinical features
- Diagnosis and Grading CNMC Protocol
- Complications
- Prevention/Treatment
- Outcome
- Relation to PVL
- CNMC Protocol for Term Equivalent MRI


Epidemiology


Incidence in preterm infants (<1500g) declining in recent decades from 40-50% to 15-20%

•Inversely related to gestational age (i.e. up to 30% in <1000g versus 2% 1500-2500g) From Sheth RD: *J Child Neurol* 1998

•Majority occur within first 5 days of life (up to 50% on D1) From Volpe: *Neurology of the Newborn* 2001



Risk Factors and Pathogenesis

- Anatomical
- Changes in Cerebral Blood Flow
- Hematologic

Anatomical Factors

- Poor endothelial integrity of capillary networkcollagen sheath/ basement membrane develops closer to term
- Arterial supply to GM = vascular endzone vulnerable to ischemic injury
- High metabolic demand (cellular proliferation)
 further susceptibility to ischemia

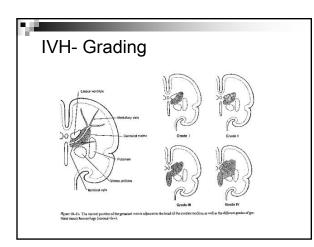
Hematologic Factors

Thrombocytopenia

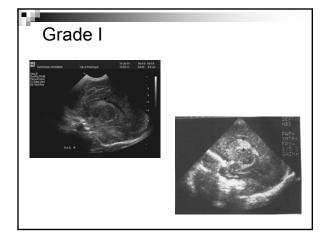
□40% infants <1500g have plt <100K

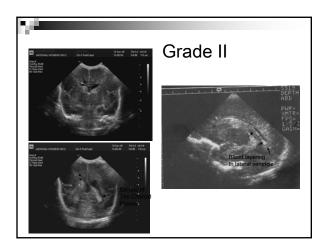
- □ Incidence of IVH 80% in thrombocytopenic pts vs 50% in non-thrombocytopenic infants <1000q
- □ Recommend plt>100K in preterm infants at risk for IVH
- Coagulation disturbances

Clinical Features


Three basic clinical syndromes accompany IVH

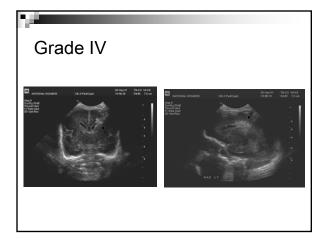
- 1. Catastrophic deterioration
 - · Evolves in minutes to hours
 - Hemodynamic instability, acidosis, falling Hct
 - Coma, posturing, seizures, fixed pupils
- 2. Saltatory deterioration
 - Evolves hours to days
 - More subtle decreased movement/ hypotonia
- 3. Clinically Silent Syndrome
 - Up to 50% of patients need to screen!

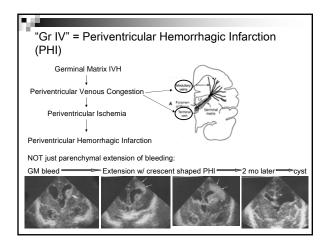

IVH- Grading

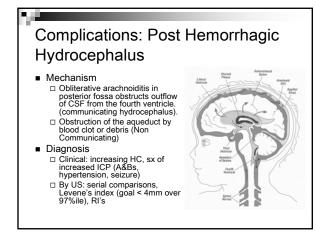

di i

- Grade I subependymal
- Grade II SEH + IVH <50%
- Grade III IVH >50% + ventriculomegaly
- Grade IV Parenchymal (Periventricular Hemorrhagic Infarction)



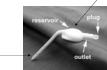





CNMC US Protocol

- All infants <1750g at birth (by DOL #5)</p>
- If Repeat at 1-2 weeks of life
- If + then follow weekly until stable on 2 scans
- Then repeat at 6 wks for PVL*
- * PVL/ role for MRI to be discussed later

Prevention


Prenatal

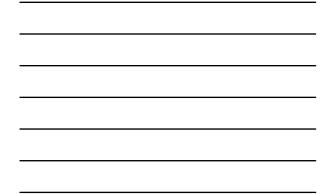
- □ Antenatal steroids: 2-3x risk reduction for IVH
- □ Transfer mother to perinatal center with NICU if possible (increased IVH in preemies transported ex-
- utero) ■ Postnatal
 - Optimize management ventilatory (control pCO2, ?avoid HFOV), hemodynamic (avoid BP swings), correct coagulopathy (plt >100K)
 - Medications Use of prophylactic phenobarbital, indomethacin, vitamin E studied, but findings inconsistent and not routinely recommended

Management

- If stable/ resolving neurodevelopmental followup!!!
- If progressive ventricular dilation +/- clinical s/sx
 consult neurosurgery. May require serial LP and/or VAD/ EVD/ VPS
 Sits in subgaleal space

VAD access: •*Sterile* procedure •Remove 10-15 ml/kg/d or as needed

Management

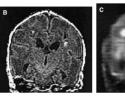

Into ventricle

Timing of VPS placement controversial, but 2 important factors:

- Debris/ clot must be resorbed (indicated by US and CSF protein count) – otherwise risk for shunt obstruction/ infection/ failure
- Size of baby- must be able to tolerate enough tubing coiled in peritoneal space to grow with baby- to avoid need for revision later in life

Outcome			
Severity of Hemorrhage	Mortality rate (%)	Progressive Ventricular dilatation (% of survivors)	Incidence of definite neurological sequelae (%) *
Grade I	5	5	5
Grade II	10	20	15
Grade III	20	55	35
Grade IV	50	80	90
* Motor deficits (typically spastic hemiparesis of LE), Cognitive, Visual and Auditory			

From Volpe 2001


Periventricular Leukomalacia

- White matter damage (focal necrosis), usually symmetrical in periventricular region
- Risk factors similar to IVH (cerebral autoregulation, vascular integrity, vascular endzone ⇒ ischemia), but different pathological entity
- Vulnerability of periventricular oligodendrocytes to: □ Ischemia/ reperfusion
 - Hypocarbia
 - Sepsis (chorio), inflammation, cytokines
 - □ Reactive oxygen species
- Usually results in spastic diplegia but also cognitive/ behavioral, visual defects

Periventricular Leukomalacia

Findings often not evident on HUS until 4-6wks- time to develop necrosis/ neuronal loss cysts evident on US

Early Ultrasound: Often (–) or only Subtle Ventricular Assymetry

T1 weighted MR DWI MRI can detect injury earlier, and non-cystic white matter injury (WMI) not seen on US

MRI in Premature Infants at Term Equivalent

- MRI has higher sensitivity when compared to HUS, especially for WMI
- MRI at term equivalent predicts NDO for preterm infants better than US (Woodward et al NEJM, Mirmiran et al Pediatrics 2004, Dyet et al Pediatrics 2006)
- CNMC protocol: goal for all infants born GA <30 wks to have MRI at 36+ weeks for prognostic purposes prior to discharge
 - \square Denote corrected age on request
 - □ Attempt non-sedated exam with infant immobilizer