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A

 

CUTE renal failure is characterized by a deteriora-
tion of renal function over a period of hours to

days, resulting in the failure of the kidney to excrete ni-
trogenous waste products and to maintain fluid and
electrolyte homeostasis. In the past five decades, sever-
al important causes of acute renal failure and the path-
ophysiologic mechanisms that underlie renal dysfunc-
tion have come to be understood. In this article we
highlight the epidemiology, general causes, and evalua-
tion of acute renal failure in adults. We then expand on
the pathophysiology of ischemic acute renal failure and
discuss the rationale for both current and future thera-
pies. Finally, replacement therapies are considered in
the light of recent studies.

 

B

 

ACKGROUND

 

 

 

AND

 

 E

 

PIDEMIOLOGY

 

When one attempts to review the subject of acute re-
nal failure, one is immediately struck by the confusion
in terminology and wide disparity in the definitions of
terms. Notably, in a recent review of 26 studies on post-
operative renal failure, no 2 studies used the same def-
inition of acute renal failure.

 

1

 

 Commonly used defini-
tions of acute renal failure include an increase in serum
creatinine of 

 

�

 

0.5 mg per deciliter (44 

 

m

 

mol per liter)
over the base-line value, an increase of more than 50
percent over the base-line value, a reduction in the cal-
culated creatinine clearance of 50 percent, or a de-
crease in renal function that results in the need for di-
alysis.

 

2-4

 

 There are also differences in the causes of
acute renal failure in each study and lack of conformity
in the use of the term “acute tubular necrosis.” Acute
tubular necrosis is a pathological diagnosis, and pa-
tients with ischemic or toxic insults to their kidneys
might be expected to have tubular necrosis, but pa-
tients with acute renal failure due to other causes might
not. In many studies, the analysis includes all causes of
acute renal failure.

 

5-7

 

 Finally, the frequency of acute re-

nal failure varies greatly depending on the clinical set-
ting. For example, the frequency among patients is
1 percent at admission to the hospital,

 

7

 

 2 to 5 percent
during hospitalization,

 

6,8

 

 and as high as 4 to 15 percent
after cardiopulmonary bypass.

 

4

 

C

 

AUSES

 

 

 

OF

 

 A

 

CUTE

 

 R

 

ENAL

 

 F

 

AILURE

 

Acute renal failure can result from decreased renal
perfusion without cellular injury; an ischemic, toxic, or
obstructive insult to the renal tubule; a tubulointerstitial
process with inflammation and edema; or a primary re-
duction in the filtering capacity of the glomerulus (Fig.
1). If renal tubular and glomerular function is intact but
clearance is limited by factors compromising renal per-
fusion, the failure is termed prerenal failure, or prerenal
azotemia. If renal dysfunction is related to obstruction
of the urinary outflow tract, it is termed postrenal fail-
ure, or postrenal azotemia. Acute renal failure due to a
primary intrarenal cause can be called intrinsic renal
failure, or renal azotemia. Prerenal failure and intrinsic
renal failure due to ischemia and nephrotoxins are re-
sponsible for most episodes of acute renal failure. Pre-
renal azotemia accounts for approximately 70 percent of
community-acquired cases of acute renal failure

 

7

 

 and 40
percent of hospital-acquired cases.

 

6

 

 Sustained prerenal
azotemia is the most common factor that predisposes
patients to ischemia-induced tubular necrosis.

 

6,9-11

 

 Hos-
pital-acquired acute renal failure is often due to more
than one insult.

 

12

 

 Frequently encountered combinations
of acute insults include exposure to aminoglycosides in
the setting of sepsis,

 

2

 

 administration of radiocontrast
agents in patients receiving angiotensin-converting–
enzyme inhibitors,

 

12

 

 or treatment with nonsteroidal an-
tiinflammatory agents (NSAIDs) in the presence of con-
gestive heart failure.

 

13

 

Prerenal Causes

 

Prerenal azotemia is rapidly reversible if the under-
lying cause is corrected. In the outpatient setting, vom-
iting, diarrhea, poor fluid intake, fever, use of diuretics,
and heart failure are all common causes. Elderly pa-
tients are particularly susceptible to prerenal azotemia
because of their predisposition to hypovolemia and high
prevalence of renal-artery atherosclerotic disease.

 

14

 

 The
combination of angiotensin-converting–enzyme inhib-
itors and diuretics can cause prerenal azotemia in
patients with large-vessel

 

15

 

 or small-vessel

 

16

 

 renal vas-
cular disease. In patients with diminished renal perfu-
sion, NSAIDs can precipitate prerenal azotemia.

 

11,13,17

 

Cyclosporine and tacrolimus also cause prerenal azo-
temia by inducing vasoconstriction of the small renal
vessels.

 

18,19

 

 Among hospitalized patients, prerenal azo-
temia is often due to cardiac failure, liver dysfunction,
or septic shock.

 

6,8

 

 In surgical patients, prerenal azote-
mia is a common cause of perioperative and postoper-
ative renal dysfunction. Anesthesia decreases effective
blood volume and, when accompanied by a reduction
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in mean arterial pressure, can lead to a decrease in re-
nal blood flow.

 

Postrenal Causes

 

Acute renal failure occurs when both urinary outflow
tracts are obstructed or when one tract is obstructed in
a patient with a single functional kidney. Obstruction is
most commonly due to prostatic hypertrophy, cancer of
the prostate or cervix, or retroperitoneal disorders

 

20

 

and often presents in the outpatient setting.

 

6,7,21

 

 A neu-
rogenic bladder can result in functional obstruction.
Other, less frequent, postrenal causes of acute failure
can be intraluminal, such as bilateral renal calculi, pap-
illary necrosis, coagulated blood, bladder carcinoma,
and fungus, or extraluminal, such as retroperitoneal fi-
brosis, colorectal tumor, and other malignant conditions.
Furthermore, within the kidney, intratubular obstruc-
tion can be caused by various crystals, including uric
acid,

 

22

 

 calcium oxalate,

 

23

 

 acyclovir,

 

24

 

 sulfonamide,

 

25

 

 and
methotrexate,

 

26

 

 as well as myeloma light chains. Post-
renal causes are important to rule out quickly, since the
potential for recovery of renal function is often inverse-
ly related to the duration of obstruction.

 

27

 

 In addition,
even in patients with advanced stages of cancer, ureter-
al stenting or percutaneous nephrostomy can relieve the
obstruction and may improve short-term outcome.

 

28

 

Intrinsic Causes

 

Intrinsic renal diseases that result in acute renal fail-
ure are categorized according to the primary site of
injury: tubules, interstitium, vessels, or glomerulus. In-
jury to the tubules is most often ischemic or toxic in or-
igin. Prerenal azotemia and ischemic tubular necrosis
represent a continuum, with the former leading to the
latter when blood flow is sufficiently compromised to
result in the death of tubular cells. As shown in Figure
2, many clinical conditions can lead to kidney ischemia

as a result of either extrarenal or intrarenal factors that
compromise renal blood flow. Although most cases of
ischemic acute renal failure are reversible if the under-
lying cause is corrected, irreversible cortical necrosis
can occur if the ischemia is severe, especially if the dis-
ease process includes microvascular coagulation such as
may occur with obstetrical complications, snake bites,
or the hemolytic–uremic syndrome.

 

29

 

After ischemia, toxins account for the largest number
of cases of acute renal failure. Aminoglycoside antibi-
otics and radiocontrast agents are the most common
toxins encountered, but heme pigments,

 

30

 

 chemothera-
peutic agents such as cisplatin,

 

31

 

 myeloma light-chain
proteins,

 

32

 

 and other drugs may also be responsible.
Drugs can cause acute renal failure by directly damag-
ing tubular cells or by various other mechanisms (Table
1). Ischemia and toxins often combine to cause acute re-
nal failure in severely ill patients with conditions such
as sepsis, hematologic cancers, or the acquired immu-
nodeficiency syndrome.

 

33,34

 

Acute renal failure due to acute interstitial nephritis
is most often caused by an allergic reaction to a drug.

 

35

 

Other less frequent causes include autoimmune diseas-
es (e.g., lupus), infiltrative diseases (e.g., sarcoidosis),
and infectious agents (e.g., legionnaire’s disease and
hantavirus infection).

 

36

 

 Renal failure due to acute inter-
stitial nephritis is often reversible after the withdrawal
of the offending medication or treatment of the under-
lying disease. Corticosteroids may hasten the recovery
of renal function during acute interstitial nephritis,

 

37

 

but their role remains controversial because controlled
studies are lacking and corticosteroids may be contra-
indicated in patients with underlying infection.

Glomerulonephritis can present as subacute or acute
renal failure. Serologic assays and immunopathological
examination of the kidney can identify specific causes of
rapidly progressive glomerulonephritis. It is important
to diagnose glomerulonephritis quickly, since prompt
use of immunosuppressive agents, plasma exchange, or
both may be indicated to reduce the occurrence of life-
threatening complications and decrease the risk of end-
stage renal failure.

 

38,39

 

R

 

ISK

 

 F

 

ACTORS

 

, M

 

ORBIDITY

 

, 

 

AND

 

 M

 

ORTALITY

 

In patients with prerenal azotemia renal injury is
more likely to be caused by drugs that can alter in-
trarenal hemodynamics, such as NSAIDs,

 

13,17

 

 or reach
high concentrations in renal tissue, such as aminogly-
cosides.

 

2

 

 Patients with preexisting renal insufficiency
are predisposed to acute renal failure due to radiocon-
trast agents,

 

40

 

 aminoglycosides,

 

35

 

 atheroembolism,

 

41

 

 and
cardiovascular surgery.

 

4,42

 

 Patients with both renal in-
sufficiency and diabetes mellitus are at particularly
high risk for toxic reactions to radiocontrast agents.

 

40

 

Patients with hyperbilirubinemia also appear to be pre-
disposed to acute renal failure. Elderly patients are sus-
ceptible to many forms of acute renal failure because
the aging kidney loses functional reserve and its ability
to withstand acute insults is compromised.

 

14

 

Acute renal failure can be oliguric (urinary output,

 

Figure 1. Main Categories of Acute Renal Failure.
The causes of acute renal failure can be categorized as prere-
nal, intrinsic, and postrenal. Once prerenal and postrenal caus-
es have been excluded, one is left with intrinsic causes, which
are associated with high rates of morbidity and mortality. The
percentages listed reflect our experience; proportions may vary

from institution to institution and from country to country.

Acute renal failure

Intrinsic causes

Interstitial
nephritis

(10% of cases)

Tubular
necrosis

Ischemia
(50% of cases)

Toxins
(35% of cases)

Acute
glomerulonephritis

(5% of cases)

Postrenal
causes

Prerenal
causes
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�

 

400 ml per day) or nonoliguric (

 

�

 

400 ml per day).
Patients with nonoliguric acute renal failure have a
better prognosis than those with oliguric renal failure,
probably due in large measure to the decreased severity
of the insult and the fact that many have drug-associ-
ated nephrotoxicity or interstitial nephritis.

 

10,12,43-45

 

 The
percentage of patients with acute renal failure who re-
quire dialysis ranges from 20 to 60 percent.

 

43,44

 

 Among
the subgroup of patients who survive initial dialysis,
less than 25 percent require long-term dialysis, demon-
strating the potential reversibility of the syndrome.

 

6,46

 

Mortality rates in acute renal failure range from ap-
proximately 7 percent among patients admitted to a
hospital with prerenal azotemia

 

7

 

 to more than 80 per-
cent among patients with postoperative acute renal fail-
ure.

 

1,4

 

 Despite major advances in dialysis and intensive
care, the mortality rate among patients with severe
acute renal failure (primarily ischemic in origin) re-
quiring dialysis has not decreased appreciably over the
past 50 years. This may be explained by two demo-
graphic changes: the age of patients continues to rise,
and coexisting serious illnesses are increasingly com-
mon among these patients.

 

10,47,48

 

 When acute renal fail-
ure occurs in the setting of multiorgan failure, espe-
cially in patients with severe hypotension or the acute
respiratory distress syndrome, the mortality rate ranges
from 50 to 80 percent.

 

11,49-52

 

Before the development of dialytic therapies, the
most common causes of death in patients with acute re-
nal failure were progressive uremia, hyperkalemia, and

complications of volume overload. With the advent of
dialysis, the most common causes of death are sepsis,
cardiovascular and pulmonary dysfunction, and with-
drawal of life-support measures.

 

11,43,47,48

 

D

 

IAGNOSTIC

 

 E

 

VALUATION

 

History Taking and Physical Examination

 

Evaluation of the patient’s history and physical ex-
amination often reveals the cause of renal dysfunction.
For example, a history of exposure to nephrotoxic med-
ication, a recent history of angiography, and physical
findings of volume depletion all provide important di-
agnostic information and suggest specific interventions.
Other diagnostic clues can be ischemia in an arm or
leg, which suggests the presence of rhabdomyolysis, and
anuria, which suggests postrenal acute renal failure. Al-
lergic interstitial nephritis may be accompanied by a
rash. Atheroembolic renal failure can be associated with
livedo reticularis and signs of emboli to the legs. Bone
pain in an elderly patient should suggest multiple my-
eloma as a possible cause of acute renal failure. Pal-
pable purpura, pulmonary hemorrhage, and sinusitis
should lead the physician to consider systemic vasculi-
tis with glomerulonephritis as a cause.

 

Urine Evaluation

 

Further diagnostic information should be obtained
from the urinalysis and urine indexes, both of which
are readily available, inexpensive, routine screening
tests for patients with renal disease. Typical urine find-

 

Figure 2. Conditions That Lead to Ischemic Acute Renal Failure.
A wide spectrum of clinical conditions can result in a generalized or localized reduction in renal blood flow, thus increasing the like-
lihood of ischemic acute renal failure. The most common condition leading to ischemic acute renal failure is severe and sustained

prerenal azotemia. Kidney ischemia and acute renal failure are often the result of a combination of factors.

Intravascular volume depletion and hypotension
Gastrointestinal, renal, and dermal losses;

hemorrhage; shock

Generalized
or localized reduction in

renal blood flow

Ischemic
acute renal failure

Decreased effective intravascular volume
Congestive heart failure,
cirrhosis, nephrosis, peritonitis

Medications
Cyclosporine, tacrolimus, 
angiotensin-converting – enzyme inhibitors,
nonsteroidal antiinflammatory drugs,
radiocontrast agents, amphotericin B

Large-vessel renal vascular disease
Renal-artery thrombosis or embolism,
operative arterial cross-clamping, 
renal-artery stenosis

Small-vessel renal vascular disease
Vasculitis, atheroembolism, hemolytic –
uremic syndrome, malignant hyper-
tension, scleroderma, preeclampsia, 
sickle cell anemia, hypercalcemia,
transplant rejection

Hepatorenal syndrome Sepsis
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ings in patients with acute renal failure are shown in
Table 2. In the absence of erythrocytes, heme-positive
urine suggests the presence of myoglobin or hemoglo-
bin, supporting a clinical diagnosis of rhabdomyolysis
or transfusion reaction. The characteristics of casts are
helpful. Pigmented granular casts are typically found in
ischemic or toxic acute renal failure, white-cell casts in
interstitial nephritis, and red-cell casts in glomerulone-
phritis. The presence of eosinophils in urine may sug-
gest allergic interstitial nephritis, al-
though eosinophiluria is of limited
value diagnostically since it is seen in
other causes of acute renal failure,
such as atheroembolism and pyelo-
nephritis.

 

41,53

 

 Oxalate crystals are
seen in cases of ethylene glycol in-
gestion.

Urine indexes, which measure
urine osmolality, urinary sodium
concentration, and fractional excre-
tion of sodium, help differentiate be-
tween prerenal azotemia, in which
the reabsorptive capacity of tubular
cells and the concentrating ability of
the kidney are preserved, and tubu-
lar necrosis, in which both these
functions are impaired. One of the
earliest functional defects seen with
tubular damage is loss of the ability
to concentrate the urine. Patients
with oliguria and acute renal failure
due to prerenal causes tend to have a
urine osmolality of more than 500

mOsm per kilogram, a urinary sodium concentration
below 20 mmol per liter, and a fractional excretion of
sodium below 1.0 percent. In contrast, in patients with
tubular necrosis, urine osmolality is less than 350
mOsm per kilogram, the urinary sodium concentration
exceeds 40 mmol per liter, and the fractional excretion
of sodium exceeds 1.0 percent.

 

54

 

 Although the urine in-
dexes help differentiate prerenal azotemia from tubular
necrosis, they do not completely segregate the two con-
ditions.

 

55

 

 As an example, early in the course of certain
processes that lead to tubular damage, such as myoglo-
binuria, exposure to radiocontrast agents, sepsis, or ob-
struction, the urinary sodium concentration can be low.

 

Blood Tests

 

Other blood tests in addition to the measurement of
urea nitrogen and creatinine in serum help in the dif-
ferential diagnosis of acute renal failure. The presence
of hypercalcemia and hyperuricemia can point to a
malignant condition as a cause, elevated creatine ki-
nase levels may indicate rhabdomyolysis, abnormal se-
rum immunoelectrophoresis results suggest myeloma,
and the presence of eosinophilia is consistent with al-
lergic interstitial nephritis. The presence of an osmolal
gap (the difference between the measured and the cal-
culated osmolality) suggests the presence of a low-
molecular-weight nephrotoxin, such as ethylene glycol.
Serologic tests for systemic immunologic diseases may
confirm a clinical suspicion of glomerulonephritis.

 

39

 

Evaluation of Obstruction

 

In the early evaluation of acute renal failure it is im-
portant to rule out urinary tract obstruction, especially
in patients who present with severe oliguria or anuria.
Simple bladder catheterization can rule out urethral
obstruction. Renal ultrasound examination is a useful

 

*Interleukin-2 produces a capillary-leak syndrome with volume contraction.

†The mechanism of this agent is unclear but may be due to additives.

‡Acute renal failure is most likely to occur when lovastatin is given in combination with
cyclosporine.

§Ethylene glycol–induced toxicity can cause calcium oxalate crystals.

¶Uric acid crystals form as a result of tumor lysis.

 

�

 

Many other drugs in addition to the ones listed can cause renal failure by this mechanism.

 

Table 1. Drugs Associated with Acute Renal Failure.

 

M

 

ECHANISM

 

D

 

RUG

 

Reduction in renal perfusion 
through alteration of intra-
renal hemodynamics

NSAIDs, angiotensin-converting–enzyme
inhibitors, cyclosporine, tacrolimus, ra-
diocontrast agents, amphotericin B, in-
terleukin-2*

Direct tubular toxicity Aminoglycoside antibiotics, radiocontrast
agents, cisplatin, cyclosporine, tacro-
limus, amphotericin B, methotrexate,
foscarnet, pentamidine, organic sol-
vents, heavy metals, intravenous im-
mune globulin†

Heme-pigment–induced tubular 
toxicity (rhabdomyolysis)

Cocaine, ethanol, lovastatin‡

Intratubular obstruction by pre-
cipitation of the agent or its 
metabolites or by-products

Acyclovir, sulfonamides, ethylene gly-
col,§ chemotherapeutic agents,¶ meth-
otrexate

Allergic interstitial nephritis

 

�

 

Penicillins, cephalosporins, sulfonamides,
rifampin, ciprofloxacin, NSAIDs, thia-
zide diuretics, furosemide, cimetidine,
phenytoin, allopurinol

Hemolytic–uremic syndrome Cyclosporine, tacrolimus, mitomycin, co-
caine, quinine, conjugated estrogens

 

*In some conditions that lead to nonoliguric acute renal failure (e.g., exposure to radiocontrast agents and rhabdomyol-
ysis), the initial fractional excretion of sodium can be 

 

�

 

1 percent.

†When glomerulonephritis (e.g., post-streptococcal glomerulonephritis) is associated with tubulointerstitial abnormali-
ties, the urine osmolality is 

 

�

 

350 mOsm per kilogram and the fractional excretion of sodium is 

 

�

 

1 percent.

‡Early in the course of obstruction, before tubular damage has occurred, the fractional excretion of sodium can be 

 

�

 

1
percent.

 

Table 2. Typical Urine Findings in Conditions That Cause Acute Renal Failure.

 

C

 

ONDITION

 

D

 

IPSTICK

 

 T

 

EST

 

S

 

EDIMENT

 

 A

 

NALYSIS

 

U

 

RINE

 

 
O

 

SMO-

LALITY

 

F

 

RACTIONAL

 

E

 

XCRETION

 

 

 

OF

 

 S

 

ODIUM

 

mOsm/kg %

 

Prerenal azotemia

 

Trace or no proteinuria A few hyaline casts possible

 

�

 

500

 

�

 

1

 

Renal azotemia

 

Tubular injury
Ischemia

Nephrotoxins*

Mild-to-moderate pro-
teinuria

Mild-to-moderate pro-
teinuria

Pigmented granular casts

Pigmented granular casts

 

�

 

350

 

�

 

350

 

�

 

1

 

�

 

1

Acute interstitial 
nephritis

Mild-to-moderate pro-
teinuria; hemoglobin; 
leukocytes

White cells and white-cell 
casts; eosinophils and eo-
sinophil casts; red cells

 

�

 

350

 

�

 

1

Acute glomerulo-
nephritis†

Moderate-to-severe pro-
teinuria; hemoglobin

Red cells and red-cell casts; 
red cells can be dysmorphic

 

�

 

500

 

�

 

1

 

Postrenal azotemia

 

‡ Trace or no proteinuria; 
can have hemoglobin, 
leukocytes

Crystals, red cells, and 
white cells possible

 

�

 

350

 

�

 

1
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means of diagnosing obstruction, but its sensitivity may
be only 80 to 85 percent. A nondilated collecting sys-
tem does not necessarily exclude the possibility of ob-
struction, especially when the condition is acute, in the
setting of retroperitoneal fibrosis, or in patients with
hypovolemia. Ultrasonography can also be used to iden-
tify stones and determine kidney size, which, if small,
suggests chronic renal insufficiency. If there is a high
index of clinical suspicion for obstruction, it may be
necessary to proceed with antegrade or retrograde con-
trast studies of the urinary outflow tract to establish the
site of obstruction and provide relief.

 

56

 

Role of Renal Biopsy in Acute Renal Failure

 

In general, renal biopsy is not necessary in the eval-
uation and therapy of patients with acute renal failure.
However, when the history, clinical features, and labo-
ratory and radiologic investigations have excluded pre-
renal and postrenal causes and suggest a diagnosis of
primary renal disease other than ischemic or toxin-
related acute renal failure, a kidney biopsy may estab-
lish the diagnosis and guide therapy. There have been
studies that assessed the value of renal biopsy in pa-
tients with atypical features of acute renal failure that
suggested pathologic conditions other than tubular ne-
crosis.

 

57,58

 

 Histologic analysis revealed various condi-
tions including glomerulonephritis, tubulointerstitial
nephritis, vascular disease, and tubular necrosis. In a
recent prospective study of patients with acute renal
failure who underwent kidney biopsy, knowledge of
histologic results altered management in nearly three
fourths of cases.

 

59

 

 In renal transplantation, a biopsy
may be particularly important in the evaluation of ear-
ly allograft dysfunction. Management decisions, espe-
cially those relating to the use of immunosuppressive
agents, depend on accurate assessment of the histo-
pathological findings. Advances in molecular genetics
have led to sensitive techniques such as the polymer-
ase chain reaction and in situ hybridization that sup-
plement standard histologic and immunofluorescence
examinations and may aid in the diagnostic evalua-
tion.

 

60

 

 The risks of renal biopsy are low. The overall in-
cidence of serious complications (arteriovenous fistula,
hematoma, infection, surgery, and death) is less than
1 percent.

 

61

PATHOPHYSIOLOGY OF ISCHEMIC ACUTE RENAL 
FAILURE AND RATIONALE FOR THERAPIES

We will focus on the pathophysiology of ischemic
acute renal failure because prerenal azotemia can be
considered a preischemic state and prerenal azotemia
and ischemia are common causes of acute renal failure.
In addition, toxins that cause tubular necrosis share
many pathophysiologic features with ischemic acute re-
nal failure.62 Structural and biochemical changes in
the postischemic kidney that result in vasoconstriction,
desquamation of tubular cells, intraluminal tubular ob-
struction, and transtubular back-leakage of the glomer-
ular filtrate are pathophysiologic mechanisms that have
been well characterized.63 Better understanding of the
vascular and cellular mechanisms responsible for the

loss of integrity of the nephrons has led to therapeutic
approaches in animals and clinical studies in humans.

Vascular Factors and Therapy with Vasodilators

Intrarenal vasoconstriction caused by an imbalance
between vasoconstrictive and vasodilative factors may
result from systemic or local vasoactive agents that act
on the small vessels of the kidney. The resulting ische-
mia can directly alter endothelial-cell function, decreas-
ing the production of and response to vasodilative sub-
stances.64,65 A number of therapeutic agents directed at
the alleviation of renal vasoconstriction have been stud-
ied. These include dopamine, calcium-channel blockers,
and natriuretic peptides; endothelin antagonists have
been studied in animals.

Dopamine

Dopamine dilates renal arterioles and increases renal
blood flow and the glomerular filtration rate.66,67 Dopa-
mine has been administered for both the prevention
and treatment of acute renal failure in critically ill pa-
tients. Proponents of its use suggest that a trial of low-
dose dopamine (0.5 to 2.5 mg per kilogram per minute)
can be useful for euvolemic patients with oliguric acute
renal failure.68,69 Clinical studies have not, however,
demonstrated the efficacy of this approach,70,71 and at
this time we do not recommend the routine use of do-
pamine for either prophylaxis or treatment of estab-
lished acute renal failure. Furthermore, dopamine can
cause tachyarrhythmias, pulmonary shunting, and gut
or digital necrosis.72

Calcium-Channel Blockers

Because increases in free calcium within vascular
smooth-muscle cells enhance vascular tone and contrib-
ute to vasoconstriction, calcium-channel blockers have
been used as renovascular vasodilators.63 They may be
useful for acute renal failure in selected clinical circum-
stances. In renal transplantation, calcium antagonists
have been shown to reduce the incidence of tubular ne-
crosis and delayed graft function.73 Furthermore, calci-
um antagonists may reduce the vasoconstrictive action
of cyclosporine.74 Calcium-channel blockers may also
prevent the vasoconstriction associated with radiocon-
trast agents.75 Because calcium antagonists may cause
hypotension and thereby decrease renal perfusion, how-
ever, their use is not justified in most forms of postische-
mic acute renal failure.

Natriuretic Peptides

In animals the vasodilative atrial natriuretic pep-
tides can attenuate the severity of renal failure and
potentiate the recovery of renal function even when
administered after an ischemic insult.76 In a recent pro-
spective study of ischemic or toxic acute renal failure,
renal function continued to improve up to 24 hours af-
ter termination of the infusion of atrial natriuretic pep-
tides.77 Furthermore, the treated group had a reduced
requirement for dialysis, as compared with the non-
treated group. Prophylaxis with atrial natriuretic pep-
tides, however, has not been demonstrated to have a
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beneficial effect in other studies.78,79 These agents were
also found to impair renal function in diabetic patients
receiving radiocontrast agents.80 The role of atrial
natriuretic peptides in acute renal failure is currently
being evaluated; a preliminary analysis from a mul-
ticenter prospective study suggests that these agents
may be useful in patients with oliguric acute renal fail-
ure.81

Other therapeutic approaches to counteract the vas-
oconstrictive component of acute renal failure will prob-
ably be tested in the near future. The renal vasculature
is quite sensitive to endothelin, which reduces renal
blood flow and the glomerular filtration rate.82 In ani-
mals, the administration of anti-endothelin antibodies
or endothelin-receptor antagonists protects the kidney
against ischemic acute renal failure.83,84

Medullary Hypoxia

Heterogeneity of intrarenal blood flow contributes
to the pathophysiology of ischemic acute renal failure.
An imbalance between the vasodilator nitric oxide and
the vasoconstrictor endothelin may also impair medul-
lary blood flow and contribute to tubular-cell dam-
age.84-86 In the outer medulla, where tubules have high
oxygen requirements, ischemia causes swelling of tu-
bular and endothelial cells87 as well as adherence of
neutrophils to capillaries and venules. These changes
lead to vascular congestion and decreased blood flow,88

tipping the tenuous balance between oxygenation and
energy demand.62,89 The important role of renal med-
ullary hypoxia, the susceptibility of this particular seg-
ment to hypoxic injury, and the various mediators in-
volved in this process have been recently reviewed in
the Journal.62

Tubular-Cell Injury

A hallmark of ischemic and toxic acute renal failure
is injury and death of tubular cells. The pathophysio-
logic events leading to the death of necrotic tubular
cells are complex and incompletely understood. We dis-
cuss the major structural and biochemical features be-
lieved to be important for necrotic tubular-cell injury
and its consequences. Some of the cellular events asso-
ciated with cell death and the restoration of tubule in-
tegrity are shown in Figure 3.

Structural Changes

Early morphologic changes observed with ischemia
include the formation of blebs in the apical membranes
of proximal tubule cells, with loss of the brush bor-
der.90,91 Proximal tubule cells lose their polarity and
the integrity of their tight junctions is disrupted,92 per-
haps as a consequence of alterations in the actin and
microtubule cytoskeletal networks.93,94 In addition, the
Na�/K�–ATPase redistributes from the basolateral to
the apical membrane,95 contributing to a decrease in
sodium and sodium-coupled vectorial transport. Inte-
grins are redistributed to the apical surface,96 and live
and dead cells slough into the tubular lumen, contribut-
ing to cast formation.97 The casts then cause increased
intratubular pressure and a reduced glomerular filtra-

tion rate. Loss of the epithelial-cell barrier and of the
tight junctions between viable cells can result in back-
leakage of the glomerular filtrate, further reducing the
effective glomerular filtration rate. Arg-Gly-Asp pep-
tides, which are hypothesized to act by preventing ad-
hesion between cells in the tubular lumen, prevent the
increase in proximal tubular pressure96 and mitigate is-
chemic acute renal failure in animals.98

Osmotic Agents and Diuretics

Mannitol has been administered to animals and pa-
tients with the rationale that preventing cell swelling
and increasing intratubular flow might decrease in-
tratubular obstruction and mitigate renal dysfunction.
Furosemide and bumetanide have also been used to
increase intratubular flow rates. Mannitol and other os-
motic agents help preserve transplanted kidneys ex vivo
and prevent delayed graft function, which is most often
caused by ischemia.99 Mannitol is recommended, along
with vigorous volume replacement and sodium bicar-
bonate, for the prevention and treatment of early myo-
globinuric acute renal failure.30 This agent is also used
together with adequate hydration in an attempt to pre-
vent the nephrotoxic effects of cisplatin.

Although mannitol and furosemide have been shown
in animals to help protect the kidney against ischemic
injury,87,100,101 most studies in humans have failed to
demonstrate the effectiveness of these agents in the
prevention or treatment of ischemic or toxic acute renal
failure.71,79,102 Both mannitol and loop diuretics, if ad-
ministered early in the course of ischemic acute renal
failure, can convert an oliguric to a nonoliguric state.
Although nonoliguric acute renal failure is generally as-
sociated with a lower mortality rate,43,102,103 there is little
evidence that conversion from an oliguric to a nonoli-
guric state decreases the mortality rate. Patients with a
response to diuretics may have less severe renal dam-
age at base line than those with no response. Finally,
diuretics can be detrimental in acute renal failure in-
duced by radiocontrast agents.3,80,104 At this time the
use of loop diuretics can only be justified to increase
urine output for fluid management, with no expectation
that these agents will improve outcome.

Biochemical Changes

Calcium. Depletion of cellular ATP, which accom-
panies ischemia, leads to an increase in the cytosolic
calcium concentration in cells.105 In addition to its vas-
oconstrictive effects, calcium can contribute to epithe-
lial-cell toxicity through its ability to activate proteases
and phospholipases, break down the cytoskeleton, and
interfere with mitochondrial energy metabolism. Al-
though increases in calcium occur soon after hypoxia in
experimental systems,106 there remains some controver-
sy about the extent to which increased intracellular cal-
cium causes the ischemic tubular-cell injury.63 

Reactive oxygen species. Partially reduced species of
oxygen can cause marked tissue injury. With the resto-
ration of oxygen after a period of ischemia there is a
rapid burst of oxidant formation. The sources of these
oxidants in the kidney include cyclooxygenases, mito-
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Figure 3. Tubular-Cell Injury and Repair in Ischemic Acute Renal Failure. 
After ischemia and reperfusion, morphologic changes occur in the proximal tubules, including loss of the brush border, loss of polarity,
and redistribution of integrins and Na�/K�–ATPase to the apical surface. Calcium, reactive oxygen species, purine depletion, and
phospholipases probably have a role in these changes in morphology and polarity as well as in the subsequent cell death that occurs
as a result of necrosis and apoptosis. There is a sloughing of viable and nonviable cells into the tubular lumen, resulting in the for-
mation of casts and luminal obstruction and contributing to the reduction in the glomerular filtration rate. The severely damaged kidney
can completely restore its structure and function. Spreading and dedifferentiation of viable cells occur during recovery from ischemic
acute renal failure, which duplicates aspects of normal renal development. A variety of growth factors probably contribute to the res-

toration of a normal tubular epithelium.
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chondrial electron transport, mixed-function oxidases
of the endoplasmic reticulum, the xanthine oxidase sys-
tem, and neutrophils. The role of reactive oxygen spe-
cies in ischemic acute renal failure remains in question.
Some studies in animals show that antioxidants or scav-
engers of reactive oxygen species protect against func-
tional tissue damage, whereas other studies do not.63,107

Currently, there is no compelling evidence to support
the use of scavengers of reactive oxygen species in pa-
tients with acute renal failure.

Purine depletion. Ischemia leads to the breakdown of
ATP and the formation of adenosine, inosine, and hy-
poxanthine, all of which can leak out of cells, constrict
intrarenal arterioles, and contribute to the formation of
reactive oxygen species.63 Although in one study ATP
and magnesium protected against ischemic injury in
rats,108 other experiments showed that ATP injured
oxygenated proximal tubules109 and was vasoconstric-
tive.110

Phospholipases. Phospholipase A2, a family of en-
zymes that hydrolyze phospholipids to free fatty acids
and lysophospholipids, can contribute to ischemic cel-
lular injury in various organs.63 Activated phospholip-
ase A2 can alter the permeability of cell and mitochon-
drial membranes, disturbing the bioenergetic capacity
of the cell. Peroxidation of membrane lipids due to is-
chemia and reperfusion enhances the susceptibility of
membranes to phospholipase A2.111 In addition, arachi-
donic acid, a product of phospholipase A2, is converted
to eicosanoids that are vasoconstrictive and chemotac-
tic for neutrophils.112 No specific inhibitors of phospho-
lipase A2 are available for use in humans.

Apoptosis. To this point we have focused on process-
es that contribute to tubular-cell necrosis. Certain types
of cell death, however, are finely controlled by active
processes. For example, during metamorphosis and em-
bryonic development, apoptosis, or programmed cell
death, permits the proper formation of the organism.
Pathological evidence of apoptosis has been found in
postischemic kidneys in animals113,114 and in clinical
acute renal failure in humans.63 Apoptosis seems to be
particularly prevalent in post-transplantation acute re-
nal failure, where it coexists with necrosis.115

Neutrophils and Reperfusion Injury

The adherence of neutrophils to the vascular endo-
thelium is an essential step in the extravasation of these
cells into ischemic tissue.116,117 Chemotaxis of neutro-
phils is partly due to the activation of the complement
cascade, with local formation of C5a.118 After adherence
and chemotaxis, neutrophils release reactive oxygen
species, proteases, elastases, myeloperoxidase, and oth-
er enzymes that damage the tissue. These substances,
together with leukotriene B4 and platelet-activating fac-
tor, can both increase vascular permeability and up-
regulate the expression of adhesion molecules that pro-
mote further inflammation.112,119 In models of renal,
myocardial, and intestinal ischemia, the depletion of
neutrophils, blockade of neutrophil adhesion to the en-
dothelium, and inhibition of the complement system all
reduce tissue injury.118,120-122

Intercellular adhesion molecule 1 (ICAM-1) on endo-

thelial cells interacts with CD11a/CD18 and CD11b/
CD18 on neutrophils, promoting the adhesion of neu-
trophils to endothelial cells.116 The administration of a
monoclonal antibody directed against ICAM-1 protects
animals from ischemic acute renal failure, even when
given two hours after the ischemic event.123 In addition,
mice with a deficiency of ICAM-1 are protected against
acute renal failure.120 Antibodies against ICAM-1 have
been administered safely to allograft recipients in a
phase 1 trial.124 

Acute Renal Failure in Transplant Recipients

Ischemic injury to an allograft from a cadaveric do-
nor can lead to delayed graft function, which has been
associated with acute rejection and decreased graft sur-
vival.125,126 Extensive local release of cytokines, comple-
ment activation, and increased expression of MHC
class I and II molecules occur as a result of kidney
ischemia.127,128 Furthermore, at the site of ischemia, lo-
cal production of tumor necrosis factor and comple-
ment fragments induces the expression of selectins and
ICAM-1 on endothelial cells.129,130 Preliminary studies
with antagonists of platelet-activating factor and anti-
bodies against ICAM-1 suggest that platelet activation
and leukocyte–endothelial-cell interactions may be im-
portant in early post-transplantation renal failure and
rejection in humans.119,124 In the future, other approach-
es to decrease ischemic injury and rejection in the al-
lograft may include the use of complement inhibitors,131

anticytokine agents,132 or endothelin antagonists.133

Role of Growth Factors in Recovery from Ischemic Acute 
Renal Failure

In contrast to the heart and brain, where ischemia
results in permanent cell loss, the kidney, when severe-
ly damaged by ischemia or toxins, can completely re-
store its structure and function. Increased mitotic ac-
tivity and epithelial-cell regeneration are characteristic
of ischemic acute renal failure in humans. Postische-
mic recovery duplicates certain aspects of renal devel-
opment.134 Proteins normally expressed only in the ear-
ly phase of nephron development are expressed in the
epithelium of the recovering kidney. An understanding
of the mechanisms responsible for this pattern of ex-
pression may lead to therapies designed to potentiate
the regenerative response and reverse functional renal
failure rapidly. Epidermal growth factor, hepatocyte
growth factor, and insulin-like growth factor I, when
administered to animals subjected to renal ischemia,
reduce the extent of renal dysfunction and accelerate
the recovery of the kidney.135,136 Administration of thy-
roid hormone may also be beneficial, inducing the syn-
thesis of epidermal growth factor in the kidney.137 Clin-
ical trials evaluating the effectiveness of insulin-like
growth factor I in ischemic acute renal failure are un-
der way.138

MANAGEMENT OF ACUTE RENAL FAILURE

General Principles

The initial care of patients with acute renal failure
is focused on reversing the underlying cause and cor-
recting fluid and electrolyte imbalances. Fluid manage-
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ment is based on careful physical examination and
invasive monitoring if appropriate. The decision to ad-
minister or remove fluids, however, is often difficult for
the clinician, since both strategies can have detrimen-
tal consequences if pursued inappropriately. Although
restoration of renal blood flow with intravenous vol-
ume resuscitation is ineffective in restoring renal func-
tion once tubular necrosis is established, volume re-
placement remains our most effective prophylactic
strategy.71 

Every effort should be made to prevent further kid-

ney injury and provide supportive measures until recov-
ery has occurred. Nephrotoxins should be discontinued
or avoided. Hyperkalemia can be treated with binding
resins, glucose and insulin, correction of acidosis, and
when refractory to treatment or life-threatening, dialy-
sis. If metabolic acidosis is due to renal dysfunction, the
administration of sodium bicarbonate may be appropri-
ate. The doses of medications that are eliminated by
the kidney or by dialysis should be adjusted. Anemia of-
ten results from phlebotomy, decreased production of
erythropoetin, and a uremia-induced decrease in red-

Figure 4. Possible Role of Neutrophil Activation by Dialysis Membranes in Ischemic Acute Renal Failure.
In the ischemic kidney, local production of inflammatory mediators is associated with increased expression of adhesion molecules,
such as intercellular adhesion molecule 1 (ICAM-1) and P- and E-selectins, on endothelial cells and increased production of coun-
terreceptors on leukocytes. Interactions between leukocytes and endothelial cells may lead to the obstruction of small vessels, and
extravasation of neutrophils may aggravate tissue damage in the postischemic kidney. Furthermore, when blood comes in contact
with a foreign material (such as cuprophane membranes during hemodialysis), the complement system is activated by the alternative
pathway, which leads to the release of biologically active fragments (e.g., the anaphylatoxins C3a and C5a). In particular, C5a-induced
stimulation of neutrophils results in increased expression of various receptors, such as CD11b/CD18, which bind to ICAM-1 and to
the inactivated complement fragment iC3b on endothelial cells. Similar interactions between leukocytes and endothelial cells poten-

tiating kidney ischemia may occur in sepsis.
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cell survival. Uremia also causes platelet dysfunction,
which predisposes patients to bleeding. Bleeding disor-
ders can be treated with packed red cells, vasopressin
analogues, estrogens, and dialysis; however, the effec-
tiveness of these interventions varies. Because the most
common cause of death in acute renal failure is sepsis,
considerable effort should be directed toward prevent-
ing and treating infectious complications.

Replacement Therapy

For the past four decades intermittent hemodialysis
has remained the standard replacement therapy for se-
vere acute renal failure. Common indications for acute
dialysis include volume overload, hyperkalemia, meta-
bolic acidosis, and symptoms and signs of severe ure-
mia. In recent years continuously administered (veno-
venous and arteriovenous) therapies have emerged as
yet another type of replacement therapy in critically ill
patients with renal failure.139 The advantages of contin-
uous over intermittent dialysis include more precise flu-
id and metabolic control, decreased hemodynamic in-
stability, and (in patients with sepsis or multiorgan
failure) an enhanced possibility of removing injurious
cytokines.140,141 Another possible advantage of continu-
ous-replacement therapies is the associated ability to
administer unlimited nutritional support.140,142 The ben-
efits and complications of parenteral nutrition in pa-
tients with acute renal failure have recently been
reviewed.142 The drawbacks of continuous therapies in-
clude the need for both prolonged anticoagulation and
nearly constant and sophisticated surveillance. Perito-
neal dialysis is also effective in acute renal failure for
patients with hemodynamic instability or when techni-
cal support is scarce.143 The cost effectiveness of the
various replacement therapies in critically ill patients
remains to be determined. Randomized studies are on-
going to determine whether continuous-replacement
therapies improve the recovery of renal function and
offer a survival advantage over intermittent thera-
pies.140 At present, the choice of one therapy over the
other is often based on individual preferences, the avail-
ability of local resources, and the hemodynamic stabil-
ity of the patient.

Whether the choice of the dialysis membrane has an
effect on morbidity and mortality in acute renal failure
remains a matter of debate among nephrologists. Al-
though cuprophane (cellulose-based) membranes have
been used since the 1960s, their interaction with blood
leads to an intense activation of the alternative pathway
of complement.144 Activation of complement is associat-
ed with an up-regulation of certain leukocyte-adhesion
molecules, which are responsible for pulmonary seques-
tration of leukocytes, hypoxemia, and transient neutro-
penia.145,146 Studies in animals suggest that neutrophils
activated by cuprophane may preferentially localize in
the ischemic kidney and aggravate tissue damage (Fig.
4). Furthermore, in animals exposed to cuprophane,
resolution of ischemic acute renal failure is slower than
in controls or animals exposed to polyacrylonitrile
membranes.147 Synthetic membranes (such as those
made of polymethylmethacrylate, polyacrylonitrile,

polysulfone, and other materials) activate complement
to a lesser extent than cuprophane membranes; howev-
er, they may also activate other humoral pathways and
cellular elements.148-150 In three recent prospective, ran-
domized clinical trials of patients with renal failure,
intermittent hemodialysis with biocompatible mem-
branes (either polyacrylonitrile or polymethylmetha-
crylate) as compared with cuprophane membranes im-
proved the recovery of renal function and reduced the
mortality rate.50,52,151 These studies suggest that in pa-
tients with acute renal failure who require dialysis, bio-
compatible membranes should be used.

There is no consensus among nephrologists as to
when to begin dialysis or how frequently to perform di-
alysis. Although studies that evaluated early and inten-
sive dialysis suggested that such an approach improved
survival and led to a more rapid recovery, most of these
studies included patients with mild acute renal failure
and retrospectively selected control groups.71 In one
prospective, controlled study, intensive dialysis did not
improve recovery or survival.152 It remains to be deter-
mined whether early and frequent dialysis with certain
biocompatible membranes will increase the survival of
patients with acute renal failure, particularly those with
sepsis.153

We are indebted to Drs. G. Curhan, C. Camargo, H. Corwin, and
V. Vanhoutte for reading the manuscript and providing very helpful
suggestions.
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